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The wave fields specified by the Laue-(Bragg) m cases are treated from the view points of the plane-wave 
and spherical-wave theory. The results are very similar to those in the Laue-Bragg case in Part I (Acta 
Cryst. (1972). A28, 102.). The diffraction phenomena for a finite polyhedral crystal and the exper- 
iment of Lehmann & Borrmann (Z. Kristallogr. (1967). 125, 234) are discussed from the view point of 
the spherical-wave theory. 

Introduction 

When the exit surfaces, Sa and S~, are close to each 
other the Laue-Bragg waves obtained previously may 
be reflected many times at them before leaving through 
any one of the exit surfaces. In this Part, this topic is 
treated from the stand points of both the plane-wave 
and spherical-wave theories. According to the ter- 
minology defined in Part I (Saka, Katagawa & Kato, 
1972), this case is specified as the Laue-(Bragg) m case. 
The same notations as in Part I are used in this Part, 
unless otherwise specified. The equations of Part I are 
cited by adding I to the equation number. 

Here, again, two cases of Type I and II must be 
distinguished. In the former case, the crystal waves hit 
the exit surfaces in the sequence, Sa, S~, S~, . . . ,  
whereas the sequence starts from Sb in the latter case 
(see Fig. 1). In order to specify the quantities pertinent 
to the wave fields reflected m times, the suffix m is 
added to them, e.g. the wave vector k0. m and An- 
passung 0m. Obviously, k0.0, ko. ~ and 0~ are k0, k0., and 
~, in Part I. 

The wave fields of Type I 

As shown in Fig. l(a), the waves reflected 2n and 2n + 1 
times fall on the exit surfaces S, and Sb respectively. 

The boundary conditions for the totally reflected 
waves are read as, 

O=do.2,, exp [i(ko,2.. ra.z.+,)] 

+d0,2.+1 exp [i(ko, en+l. ra,2.+l)] (la) 

0=do, z.+l exp [i(ko,2.+l. r~,2.+2)] 

+d0,2.+2 exp [i(ko,2.+a. r~.2.+2)] (lb) 

where ra, z.+l and rb,2.+2 denote position vectors on 
the surfaces Sa and Sb. 

From these equations, one can obtain the recurrence 
formulae 

do,2.+l = -do,2n exp[i{(ko,2n-ko,2n+x), ra, 2n+l}] (2a) 

At/o,2.+1 do 2.+1 
d°,2"+2= Aq0,2n+2 ' 

× exp [i((ko, 2 .+1-  ko, 2.+2) • rb,2.+2}] • (2b) 

In the last equation, the relations kg, m = ko, m + 2rig and 
dg, ,,,/do, m = 2At/o, m/KCz-o are used, where At/o, m is the 
Resonanzfehler of the wave reflected m times. By 
combining these, it is easy to see that 
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A//°' 2n+z do,2n 
d0,2.+2- A//0,2.+2 

× exp [i{[(ko. 2. + 1 -  ko, 2.+2). rb, ~.+ 2] 
+ [(ko, e.-ko,  2.+x). ra,2.+z]}] • (3) 

By repeating the same procedure the amplitudes are 
derived as 

where 

do 2. = ~I A//o,2,-i CoEe exp (icpz.) 
' /=1 A//o,2t 

do 2.+1 = - ~-I A//o,21-1 CoEe exp (#Pa.+I) 
' l = 1  A//o, 2z 

f92n = [(Ke-ko). re] 

+ ~ [(ko, zz-z-k0,21-x), r.,2t-xl 
l----I 

+ ~ [(ko,2,-x-ko, zz). rb,2z] 
I=1 

¢p2.+ z = ~02. + [(ko. 2.-ko, 2.+ ~). r.,2.+d • 

(4a) 

(40 

(5a) 

(Sb) 

Here, the amplitude do is replaced by the expression 
CoEe exp [i{(Ke- ko). re}], which is obtained from equa- 
tion (I.6a). In equations (5a and b), r.,m can be re- 
placed by any position vector r. on the surface S. 
because the tangential continuity of the wave vectors 
requires that ko. 2.- z -  ko, 2.- 1 is perpendicular to Sa. 
For the same reason, rb, m can be replaced by rb. 

By multiplying the amplitude ratio by equations 
(4a and b), G waves are obtained as follows, 

~,.'D 

I 
(a) 

I 
I 

I, B3 

do 2,, 2A//o, 2n f i  A / / 0 ,  21 -- I 
' - KCz -o  l=1 - - ~  CoEe exp (i~02.) (6a) 

dg ,  2n+ l ~ 2A//°'2n+x fi A//° '2t- t  CoEe exp (i~2n+I). 
KCz-o  t=l d//o,2l 

(6b) 

As explained in Appendix A, Resonanzfehler of the 
repeatedly reflected fields satisfy a set of recurrence 
formulae [cf. equations (A7)]. Thus, they can be re- 
presented by the Resonanzfehler of the initial Bloch 
waves, A//o and A//o, as follows. 

\ / 

A//o,2 = 70 A//o \)% ~-  

( " "  
/ I / / ° ' 2 " + 1 = -  ~a  7o/ 

~,,~.+~= r; (r; ro~ ~ 
- yo  7o r; f  Z//o. 

(7a) 

(7b) 

(7c) 

(7d) 

B3 

nO ~ Sa ~ nb Sb 
J I 
(b) 

Fig. 1. The Laue-(Bragg) m cases. (a) Type I, (b) Type II° 
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Since Co, Ar/o and Ar/o are expressed in terms of the 
deviation parameter s (cf. Tables 1 and 4 of Part I), the 
wave fields can be written as, 

d0, 2.(r) = ½F0,. 
( - s  _+ 1/s2¥~) 2"+' 
#2.(+ v'~-#-') 

x exp (ifp2.) exp [i(ko,2.. r)]Ee (8a) 

do 2.+l(r)= 1/-;, , --~" O , n  

(__S.jr ~ ) 2 n  + 1 

#2.(+ v'T+--P) 
x exp (i~02.+1) exp [i(k0,2.+i. r)]E~ (8b) 

• ' #2n-- I( "4- ¢S-2 -I- #b 

x exp (iq92.) exp [i(ko,2.. r)]Ee (8c) 

where 

X ( -- S q- V ~  "3t- #2)2" + 2 
- exp (i~O2n + 1) #2,+ 1(_+ ¢:--4-~) 

x exp [i(ko,2n+l. r)]E. (8d) 

F° "= (-~'°o)" (Y°-' \ Y'o ~'o-":I"2('°I"\--~o' (9a) 

J-'o,n: (-- ~!)n(~)~\,; Zi_~n2-n70, (~0) n (9b) 

As shown in Appendix B, the phase term 
(~0m + (ko, m" r)} in equations (8) is expressed in terms of 
s in the simple form, 

~0. + (ko, m. r ) = e +  K,,y+ Kzz 

"4-1]l,tn¢ST'~-~--l]2, m S (10) 

where rh, m + r/2, m have the same meanings as 1/1 + r/2 in 
the Laue-Bragg case and their explicit formulae are 
given by equations (B8). 

So far the plane-wave theory has been developed. 
Now the spherical-wave theory will be described. The 
spherical-wave solution is given by the Fourier trans- 
form of the plane-wave solution, as in the case of 
Laue-Bragg. The required integrals are also re- 
presented by Bessel functions in the present case (see 
Appendix A of Part I). As a result, the wave fields have 
the following forms, similar to those in the Laue-Bragg 
case. In the region r/z- 1/2 > 0: 

:o,2n(r)=(i)en+ 27cfl ( t i l_ th  )n+ ÷ 
\ ql "4-1~2 

X S2n+l (#~I~2)1"O,n • BoEe (1 la) 

~O'2n+ l(r)=(i)2nTtfl \~-l--l~2/ 

x &,+l ( # ~ ) r 0 . . .  Boee (11b) 

¢~'2"(r)=(i)z"+lzrfl° ~ -o  sign (rh--r/2) 

x ]"s,,,(p¢;/:-_:- .2 r \y]l..~..y]2 ] /']2) o,..BoEe (11c) 

C q, z.+i(r)=(i)zn+~rcflo ( Zo ] ~sign (r/x-r/2) 
\X-ol 

x &.,,(#I/~1- ~) 

x G,.+I.BoEe. (11d) 

In the region rh z -  r/z 2 < 0" 

bo, e.(r)=O (12a) 

~bo,2.+l(r) = 0 (12b) 

~bo. 2.(r) = 0 (12c) 

~bo, 2.+l(r) = 0 . (12d) 

Here ~/l is the abbreviation for th, 2n in equations (1 la 
and e) and for rh, 2.+1 in equations (1 lb and d); F o,. and 
Fo, . are given by equations (9a and b) and Bo and B o 
are given by equations (I. 48a and b). As in the case of 
Laue-Bragg, we obtain 

(13) l~2, m_ ~2, m= -~o Xo'mXo'm 

where Xo, m and Xo, m are the perpendiculars from an 
observation point to the lines K0 and K o passing 
through the point Fm (see Appendix B). 

Remembering that the wave fields given by equations 
(11) are constructed from the plane waves with the 
phase given by equation (10), and employing the sta- 
tionary phase method, we can interpret each of the 
spherical-wave solutions as a bundle of rays. All of the 
rays which are reflected 2n or 2n + 1 times at the sur- 
faces Sa and Sb pass through an imaginary source 
F2. or Fz.+l and the bundle of the rays covers the 
triangular fan associated with the source Fz. or F2.+1. 

The wave field of Type II 

The boundary conditions are given by 

0=do,2.-1 exp [i(ko, zn-1. ra)] 

+ do.2, exp [i(ko.2, • ra)] 

0=do,2 . exp [i(ko, z.. rb)] 

+do,2.+l exp [i(ko.2n+l. rb)]. 

(14a) 

(14b) 

A C 28A _2* 
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By following the same procedure as for Type I, the 
wave fields are obtained. Since no new concept is re- 
quired, only the final results are presented. 

(i) Plane-wave solution: 

(S q" ~ ) 2 n - - X  exp (i~oz,) 
do.zn(r) =½G., ~2n-2( _1_ V~..}_~2) 

x exp [i(ko,2.. r)]E~ (15a) 

(S -]" ~ 2 ) 2 n  + 1 
do, 2n+l(r) : --½/"O,n+X ~2n(+ ~ 2 )  

X exp (i~02n +1) exp [i(k0.2,+1. r ) l G  (15b) 

( ) ~2n--l((S __. ~~)2nq.  X, + (~'o i +Fo,  4.~,(r)=½ ~_~ \ r , /  ' _ ~ )  

x exp (i~02,) exp [iO~o.z,. r)]Ee (15c) 

G.~,+dr) = -½ (~_~) * (r~) + 

(S ! ~-2 "t- ~2)2n 
X G.n ~2n-X(q_ ~ )  

x exp (ifp2, + 1) exp [i(ko. 2. + t .  r)]E~ (15d) 

where 

 il"' "I ot" 
' ~ l  \~-~g ~oI \ ~ l  (16a) 

( ( ,+,+'+(,oi + Vo (16b) 
' " \ ? o l  

~ p 2 , = [ ( K , - k o ) .  rd 

+ ~ [(ko, zz-2-ko,2t-x), rb] 
i=i 

+ ~ [(k0.2,-x-k0.2,). r,] (17a) 
l=l 

~o2n+z=~O2n+[~O, 2n-ko, zn+l) . rb]. (17b) 

The phase term {fPm+(ko.m.r)} in equations (15)is 
given in the same form as in equation (10) in the case 
of Type I. The explicit forms of rh.m+__q2, m in the pre- 
sent case are given by equations (B9). 

(ii) Spherical-wave solution: 
In the region t/~-r/~ > 0: 

( ¢o. ~,(r)=(i)z'~zfl I 

\ 771 -- ~12 ] 

× ,G_d~ ~-~-,?2)ro... BoG (18a) 

¢ o , 2 n + x ( r ) = ( i ) 2 n T ~  (fix q- r12 ) n+~- 
\ r/x -- r/2 

× .6.÷L8 ~ff~-,TDro,.÷~. BoG (18b) 

Ca.2n(r)=(i)2n+xTCflg ~ sign(rh+rh) \ rh - r /2  

x J 2 , , ( P ~ ~ ) G , .  • B+E. (18c) 

Cg,2.+x(r)=(i)2"+37rflg ( Y g l+sign (rh+rh) (rh +rh ~" 
\X -g /  \ r h - r h  / 

2 2 F ,  . . x J z , ( f l ~ )  o.. BgEe (18d) 

In the region ~/~- r/~ < 0: 

~bo,2,(r) = 0 (19a) 

~bo,2.+~(r) = 0 (19b) 

q~a. 2n(r)---- 0 (19c) 
~bg,2.+x(r) = 0 .  (19d) 

In equations (18) the subscript 2n or 2 n + l  in r/l is 
omitted. These solutions, again, have the properties 
described in the case of Type I. 

Vacuum waves 

The vacuum wave fields in the Laue-(Bragg) m cases 
are easily obtained for both Types I and II. The pro- 
cedures are similar to those in the case of Laue-Bragg. 
The vacuum wave field specified by m is the trans- 
mitted wave of the G or O component of the crystal 
wave specified by m -  1. 

In the plane-wave theory, writing the transmitted 
waves through the surfaces So and Sb as 

and 
ga, t, m exp [i(Kg, t,m. r)] 

g o ,  t, m exp [ i (K0, , , s .  r)] 

respectively, the amplitudes are determined by the 
additional boundary conditions; 

Eg, t ,m exp [ i (Kg, , , s .  r.)] 

=do, m_ 1 exp [ i ~ a , m _  1 . r~)] 

+ do, m exp [i(kg, m. r.)] (20a) 

Eo. ,. s exp [i(Ko, t, m-rb)] 

---do, m_ 1 exp [i(ko.m_ 1 • rb) ] 
+ do, m exp [i(l~, m • rb)]. (205) 

From these relations, it turns out that the transmitted 
wave Eg,+,m(r) is represented by the wave fields 
dg, m-dra) and do, s(r. ). Similarly, Eo,+,m(r) is repre- 
sented by do, m-l(rb) and do, m(rb). 

In the spherical-wave theory, the situation is exactly 
the same as that in the plane-wave theory. The trans- 
mitted wave fields are a projection of the crystal wave 
fields on the exit surface concerned along either the 
l l 

Ko or Kg direction. 
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Discussion 

In this paper, the crystal and vacuum wave fields in the 
Laue-(Bragg) m cases (m =2,  3 , . . . )  have been worked 
out. In the spherical-wave theory, as in the case of 
Laue-Bragg, each wave field is confined in a triangular 
fan, emitted from an imaginary focal point Fm. The 
wave fields for different m are very similar. The Bessel 
functions involved in the expression for the wave fields 
are listed in Table 1. Real crystal waves are the sum of 
the various wave fields. For instance, the wave field in 
the triangle ~ZllB2z4 3 in Fig. l(a) is the superposition of 
the Laue-Bragg waves and the wave emitted from the 
entrance point E under the Laue condition. Similarly 
the vacuum waves are also the superposition of many 
waves, each being specified by Laue-(Bragg) m. A few 
experimental topics related to the present theory will 
be discussed in the following sections. 

Ko 

D" 

E 

9 

C'" 

Ko 
\ 

,, A ~ k , E  B 

/Z\! 
i I 

D.'%/ X / C "  
(b) 

Fig. 2. Diffraction for a polyhedral crystal. (a) real case, (b) 
hypothetical case. 

Table 1. Bessel functions appearing in the wave fields 
of  the Laue--(Bragg) m cases 

Type I Type II 
O G O G 

Laue J1 JO J1 Jo 
Laue-(Bragg)2n J2n+l J2n J2n-1 J2n 
Laue-(Bragg)2n+1 J2n+l J2n+2 J2n+l J2n 

(a) Diffraction phenomena & a finite polyhedral crystal 
In this section, we shall consider a crystal which has 

a polyhedral form. In Fig. 2(a), G waves come out from 
the crystal surface A C  under the Laue-Bragg condi- 
tion and from F H  under the Laue-Laue condition. 
They can be treated straightforwardly using the for- 
mulations discussed under the heading 'The Laue- 
Bragg case; spherical-wave theory' in Part I and in the 
paper of Kato (1968) respectively. G waves penetrating 
the surface CF are a superposition of the Laue-Laue 
waves and the Laue-Bragg-Laue (Type I) waves in our 
present terminology. Similarly, G waves coming out 
from the surface HD are the Laue-Laue and the 
Laue-Bragg-Laue (Type II) waves. It is obvious that 
the Laue-Bragg-Laue waves are nothing more than 
the projected G waves of the Laue-Bragg waves on the 
final exit surface CD. In the same way, O waves 
coming through the surfaces BD and CD can be 
understood as the Laue-Bragg waves and a superposi- 
tion of the Laue-Laue and the Laue-Bragg-Laue 
waves respectively. In more general cases, where the 
Laue-Bragg waves hit another crystal surface under 
the Bragg condition similar arguments can be applied. 

A question may arise as to what integrated powers 
are expected in the case of Fig. 2(a). Since the wave 
fields mentioned above are rather complicated, the 
interference terms are neglected. In another words, the 
ray-optical viewpoint will be adopted in the following. 
In the non-absorbing crystal, the total powers of both 
O and G beams must be equal to those for the hypo- 
thetical crystal without lateral surfaces as shown in 
Fig. 2(b). This conclusion is obtained because energy 
conservation must hold on the surface in the Bragg 
case for both O and G waves. 

In absorbing crystals the situation is different be- 
cause, firstly, the optical distance of the reflected beam 
in the real crystal is different from that of the trans- 
mitted beam in the hypothetical crystal, and, secondly, 
the linear absorption coefficients of the Bloch waves 
concerned are different.* In the symmetrical case (with 
the surfaces A C and BD parallel to the lattice plane and 
the surface CD perpendicular to the lattice plane), the 
absorption coefficients and the optical distances in the 
real and hypothetical crystals become identical. Only in 
this special case, therefore, can the conclusion for the 
non-absorbing crystal be retained. 

* The attenuation of the crystal wave is represented (Kato, 
1968) by exp { -  K[Im(zo) + CIm[(ZgZ-g) 1/2] (1 -p2)1/2] (10 + lg)} 
in which p =tan 0/tan 0B, 0 being the angle between the ray 
direction and the lattice plane. 
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(b) Borrmann and Lehmann fringes 
This study can be applied to the experiment re- 

ported by Borrmann & Lehmann (1963) and Leh- 
mann & Borrmann (1967). They were concerned with 
highly absorbing crystals and they obtained the fringe 
patterns in the regions C'F'  and C " F "  in Fig. 2(a). The 
fringes were interpreted as the interference of Laue-Laue 
and Laue-Bragg-Laue (Type I) waves, using the present 
terminology. From the plane-wave theory they cal- 
culated the fringe spacing in a special case, i.e. AB,  CD 
perpendicular to the lattice plane, A C parallel to the 
lattice plane. Using the results, they determined the 
structure factors from the spacing of fringes. The 
Pendelltisung phenomena were neglected because of the 
rapid attenuation of branch (2) waves.* Our calcula- 
tion is general for all magnitudes of absorption and for 
all geometrical relations between the lattice plane and 
the crystal surfaces. 

Strictly speaking, moreover, the experiments of 
Lehmann & Borrmann should be interpreted by the 
spherical-wave theory developed in this article. In the 
spherical-wave theory, the wave fields are expressed as 
follows; 

Laue-Laue 

O: - J l ( O , ) m  ~ / ~  (xo/xo) ~ [exp {i(0~ +¼~z)} 

+exp { - i ( 0 1  + ¼zt)}] (21a) 

G: /Jo(01)---]/1/2rcQ1 [exp{i(01+¼~)} 

+ e x p { - i ( e l  +¼~)}] (21b) 

Laue-Bragg-Laue 

O: J1(~2)--- ~ ( X o ,  r/xo.,) ~ [exp {i(oz-¼rc)} 

+exp {-i(02-a4rc)}l (21e) 

G: 

where 

iJ2(Q2) ~ _ V]-~-(Xo, r/xo,~) [exp {i(o2-agrC)} 
+exp { -  i(Q2- ¼re)}] (21d) 

Ql=floV~oXo (22a) 

Qz=floWxo,.Xo. r . (22b) 

Here, the common phase factors and constant factors 
are omitted. For highly absorbing crystals, only the 
first terms in the brackets of equations (21) are to be 
considered. In O and G waves, the phase differences 
between the Laue-Laue and the Laue-Bragg-Laue 
waves are commonly given by Q1-Q2+rc. Thus, it is 
concluded that O and G waves have maxima or minima 
of intensity at the same position. Furthermore, since 
01 is equal to Qz on the exit surface A C, the O and G 

* The authors have been informed that Uragami (1971) has 
succeeded in obtaining Pendell6sung phenomena experimental- 
ly. 

waves have a minimum at the crystal surface. The 
minimum value is zero for the O wave, whereas it is a 
finite value for the G wave. These arguments justify 
Lehmann & Borrmann's conclusions. The same situa- 
tion holds in the case of Type II in the Laue-Bragg case 
and in more general cases discussed in the previous 
sections of this paper. 

Finally, it seems worthwhile mentioning that the 
exit surfaces need not be vacuum-crystal boundaries. 
When the boundary is a stacking fault in which no 
total reflexion occurs, the crystal wave fields can be 
obtained by similar treatments. In the Laue case for 
the crystal-crystal boundary, Kato, Usami & Kataga- 
wa (1967) have already discussed the problem. The 
Bragg case will be reported in another paper. 

APPENDIX A 

Resonanzfehler and Anpassungen of the wave fidds 
reflected many times 

(a) Type I 
From the tangential continuity of the wave vectors 

at the exit surfaces, the following conditions must be 
satisfied for both O and G waves, 

k2.+ 1=k2. + K62,,+ in,, (A la)]" 

kz. = k2,,_ i + KO2.nt,. (tt lb)~" 

The Resonanzfehler of the wave fields are defined by 

At/o, m = [Ko- (kin -- ~')1 (A 2a)]" 

At/o. m = [fKo- (k , . -  ~,)]. (A 2b)t 

From equation (Ala)  the following relations are 
obtained 

At/0.2. + 1 = At/o. 2. + KO2. + lYo (A 3a) 

At/o.2,,+,=At/o.2.+KO2.+1?'o. (A3b) 

By virtue of the dispersion relation, At~o, z,,+l • At~o. 2.+1 
= At~o, 2,, • At~o, 2,. K62,,+1 is given by 

KO2.+ l =  -(At/o,2n/~o + At/o,2./),'o) . (A4) 

Substituting equation (A 4) into equations (A 3a and b), 
one obtains the recurrence formulae of the Resonanz- 
fehler 

At/0.2. + 1 = - ~'o, Arb. z,, 
7o 

7'o At/o, 2. ,dt/o.2,+ l = ;- . 

Yo 

From equation (A 1 b) K62, is given by 

Krzn= -(At/o,2n_,/yo + At/o. zn_l/?'~) . (A6) 

(ASa)  

(ASb)  

Here, the subscript 0 or g of km and k is omitted. 
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From this, another set of recurrence formulae is ob- 
tained as follows, 

# 

Yo (A 7a) A~]o,  2n = - -  - 7  A I ~ o ,  2n - 1 
9,0 

9," o At/o, 2.- ~ (A 7b) At/o, 2,, - ~ 
9,0 

By using equations (A 5) and (A 7) repeatedly, A~lo, m 
and A~Ig, m are expressed in terms of the Resonanz- 
fehler of the initial Bloch wave as shown in equations 
(7). 

By the use of equations (A 4), (A 6) and (7), the An- 
passungen Kfim are also expressed in terms of Ar/o and 
At/0, and consequently in terms of the deviation param- 
eter s. 

(b) Type  II 
The relations obtained for the wave fields in Type I 

are converted to the relations in Type II when na and 
n~ are interchanged. The modification required, there- 
fore, is simply interchanging the single and double 
primes of 9,0 and 9,0 in equations (7). The final results are 
read as 

At/o,2.= (9,~ 9,q~"Ar/og,o] (A8a) 

(9,; 9,;~"~o (A 8b) Aq,.2,= ~o 9,;I 
,o ,o). = -  -,, A~/o (A8c) Aqo, 2. + ~ ~ 9,0 

(v; (Age) 3qo,2.+i= - ~ 9,~ 9,oi 

APPENDIX B 

The evaluation of ~h,m -- ~12,m in the Laue-(Bragg) m cases 

(a) Type  I 
We shall define the points Fm as shown in Fig. l(a) 

and the oblique coordinate system K0 and I~ o whose 
origin is Fm. The coordinates are denoted by (/0, m, 
10, m ). For example, 10,3 and lo, 3 are shown in Fig. l(a). 

The phases ~m=~Om+(ko, m. r) in equations (8a and 
b) are expressed in the following forms. 

~2.+~ = ~2. + {(ko, 2.+~-ko, 2.). (r-r~)} (Bla) 

~2n = ~2.-1 + {(ko, 2.-ko, 2.-x). (r--rb)). (Blb) 

The vectors r - r a  and r - r ~  are expressed in terms of 
the oblique coordinates as follows [el  equations 
(I .B3a and b)]. 

r - r a= lo ,  2.+1~(0+10, 2.K0 (ra fixed at A2.+1)" * 

=lo, znl(oq-lo, zn+lKo (r. fixed at A2.+1) 

r - r b  = lo, 2 n - l l ( o + l  o, znK 0 (rb fixed at Bz.)-* 

=/0,2.ff0+/0,2._1I~0 (rb fixed at Bz.) 

(B2a) 

(/~2b) 
(B3a) 
(B3b) 

Operating [ ]+ on equations ( B l a  and b) as in equation 
(I.B7) we obtain 

[~2,,+l]+-[~02,,]+=Arlo.2.+llo.2,,+l-Arlg.2.tg.2,, (B4a) 

[~2.]+ -[~z,,_~]+ = A~o,2.lo,2,,--A~7o,2,,_flo,2,,_~ . (B4b) 

In deriving these, equations (B2a) and (B3a) are used. 
Repeating the same procedures we obtain 

[(P2n + 1]+ ---- Ar]o, 2n + 110, 2n + 1 (B 5a) 

[~2,]+ = A~o. 2 . /o . , . .  (BSb) 

Substituting equations (B2b) and (B3b) into equations 
(B 1) and operating [ ]_, we have 

[¢2, ,+d_--[~2, ,]_=Aqo, z,,+flo, z,,+~--A~o,z,,lo,2,, (B6a) 

[~z.]_ -[~2,,_~]_ = Arlo, 2.1o,2n- Aqo, 2n_llo, 2,,_l . (B6b) 

Thus, [~m]- are given by 

[92.+ 1]- = At/o, 2. + fla. 2. + ~ (B7a) 

[~2.]- = A~7o, z,,lo,2n. (B7b) 

Finally, using equations (7) for Ar/o,m and A~lo.,n we 
obtain the forms for ql,m _+r/z, m as follows. 

rh. 2. + r/2, 2. = ( ~  ~,)"xo, 2n (B8a) 

- - 7  xo,2n+l (B8b) rh'2"+l +r/2'2"+1 = -~o 9,0 

,o (,:: 
~ h . 2 , - ~ 2 . 2 .  = ~ 9,g! xo.2, (/~8c) 

,; 
/71'2n+l--Y]Z'2n+l~-'~ 9,0 -~0 . v  9,~1 X0'2n+l  (B8a) 

where X0,m and xo, m are the perpendiculars to the 
coordinate axes, K0 ~ind Ko respectively. 

(b) Type  II 
In this case, the points Fm are defined as shown in 

Fig. l(b). The quantities 10, m and lo, m have the same 
meanings as for Type I. In those oblique coordinates 
the vectors ra and rb must be interchanged in equations 
(B 1), (B2) and (B3). Thus, the results for Type I can 
be converted to the ease of Type II by interchanging 
the single and double primes. Finally rh, m +r/2,m are 
given by 

(9,g ~!)"  (B9a) 01, 2n "~ Y/2, 2n : -~0 XO. 2n 

# H 

~ . 2 , + ~ + , J 2 . 2 , + 1  = - ~ -  xo.2,+~ (B9b)  

(Bgc) ~/1'2"-~/2'2"= ~ ~9,o 9,o! xo,2. 
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7o Yzo, ( ~'_~_oo (B9d) ~]l,2n+l--~2,2n+l-- ~)g ~0 ~)g] Xo'2n+l" 
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One-dimensional anti-phase domain structures with an out-of-step vector u = (a + b)/2 sometimes have 
half periods of non-integral value. Fujiwara interpreted this structure as a disordered structure (a 
statistical assembly) deviating from a standard structure which he defined by a step function. In the 
present paper, it is pointed out that the unitary intensity of a superlattice reflexion for the standard 
structure is obtained in a much simpler form than that given by Fujiwara. By the use of this intensity 
formula we verify the fact that a pair of intensities with special/-indices, v and - v, is very strong while 
the others are extremely weak, so that we apparently obtain a non-integral value for the half period 
from the strongest pair. The statistical assembly, i.e. the disordered structure presented by Fujiwara, 
is interpreted using an easily understandable model, and a simple form of the corresponding intensity 
formula is obtained, which indicates that the intensities other than the pair, lv and I~, practically vanish. 
This fact implies that the non-integral half period, _~t, may be obtained experimentally from a pair of 
satellites corresponding to iv and i;. Some important remarks are made in the Appendix concerning the 
Fourier expansion of the step function. 

1. Introduction 

In part I of this series (Kakinoki & Minagawa, 1971) 
the one-dimensional anti-phase domain structures, with 
an out-of-step vector u = (a + b)/2 and the correspon- 
ding phase factor e = ( -  1) ~ +k, were classified into three 
kinds, and they were denoted by the layer sequence 
symbols which are similar to the Zhdanov symbol for 
the close-packed structures, as follows: 
(1) the complex out-of-step structure, denoted by 

(albla2b2...a,b,) with P =  ~ (at + b,), 
i=1 

(2) the complex APD (anti-phase domain) structure, 
denoted by 

([M][[~]) with [M]=(albla2[~2 . . .  as[~sas+l) 
and 

s+l 
P/2= M =  ~ as+ b~ , 

i=1 1=1 

* Present address: Department of Physics, Osaka Kyoiku 
University, Tennoji, Osaka, Japan. 

(3) the simple APD structure, denoted by 

(M]ASr) with P =  2M, 

where P is the period and at and b~ are the numbers of 
successive positive and negative layers respectively, 
where the positive and negative layers indicate the 
layers without and with the out-of-step vector, as 
shown in Fig. 1. The vertical and horizontal short 
lines in the symbols ([M]I[ASt]) and (MI~t)  mean that 
the last M layers are obtained by changing all the signs 
of the corresponding layers of the first M layers. 

The unitary intensities of superlattice reflexions in 
the case of simple APD structure are given by t  

I t = 0  for I: even 
Iz=4I~ for l: odd 

with 
1 (1) /~'= _ 

sin2~ l 
P 

t Refer to equations (I. 16), (I. 18) and (I. 19). In order to 
avoid confusion, the equation number in part I of this series is 
written as (I. 1), (I. 2) etc., and that in Fujiwara's (1957) paper as 
(F 1), (F2) etc. 


